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Solid-phase extraction (SPE) is often used for preconcentration and determination of metal ions from
industrial and natural samples. A traditional single variable approach (SVA) is still often carried out for
optimization in analytical chemistry. Since there is always a risk of not finding the real optimum by
single variation method, more advanced optimization approaches such as multivariable approach
(MVA) should be applied. Applying MVA optimization can save both time and chemical materials, and
consequently decrease analytical costs. Nowadays, using artificial neural network (ANN) and response
surface methodology (RSM) in combination with experimental design (MVA) are rapidly developing.
After prediction of model equation in RSM and training of artificial neurons in ANNSs, the products were
used for estimation of the response of the 27 experimental runs. In the present work, the optimization
of SPE using single variation method and optimization by ANN and RSM in combination with central
composite design (CCD) are compared and the latter approach is practically illustrated.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

As gold is so valuable and rare, it is always looked to be
recovered and recycled. On the other hand, determination of this
rare element is so important [1,2]. Through recent years, lots of
procedures have been employed, such as electrothermal atomic
absorption spectrometry (ETAAS) [3,4], inductively coupled plasma
optical emission spectroscopy (ICP-OES) [5,6], inductively coupled
plasma mass spectroscopy [7,8] and flame atomic absorption
spectroscopy [9,10]. Although ICP-OES and ETAAS are more sensi-
tive and procedures that used them have better figures of merit,
flame atomic absorption spectrometry (FAAS) is one of the most
popular analytical tools for the determination of low levels of heavy
metals due to its conventional handling and low expense [11,12].
Nevertheless, low insufficient sensitivity of instrument and matrix
interference are two indispensable disadvantages of FAAS [13].
However, these problems can be easily resolved by the preconcen-
tration technique due to the possibility of removing the sample
matrix and increasing sensitivity [14]. For this reason, several
methods have been applied for preconcentration and separation
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of trace concentration of gold according to the nature of the
samples and the concentrations of the analyte. They include ion
exchange [15], coprecipitation [16], solvent extraction [17] and
adsorption on a solid phase [18-20]. Among them, solid-phase
extraction has attracted more attention as it is more capable and
conventional in preconcentration [21]. A wide range of solid phases
for extraction of gold has been proposed and used: active carbon
[22], polyurethane foam [23], surfactant coated silica gel [24-26],
and mesoporous silica [27,28]. Among these various solids, meso-
porous silica has gained much importance for metal ion enrichment
due to high surface area (up to 1300 m?g~!) that causes high
adsorption capacity, chemical and mechanical stabile properties
which never shrink or expand and also easy synthesis procedure
[29]. However, still there is a problem, mesoporous silica could not
act so perfect without modifications. Modification improves their
performance as it could increase selectivity and adsorption ability.

Traditional single variation method is not a confident method
for finding real optimums, so more advanced optimization
approaches such as the multivariable approach (MVA) should be
applied. Applying MVA optimization can save time and chemical
and also decreases analytical cost. Nowadays, the use of artificial
neural network (ANN) and response surface methodology (RSM)
in combination with experimental design (MVA) is rapidly devel-
oping [30-35].
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In this work, novel pyridine functionalized MCM-48 mesopor-
ous silica has been used as a powerful adsorbent for solid-phase
extraction of gold ions. For the first time, artificial neural network
was applied for solid-phase extraction to determine gold ions, and
results were compared with response surface methodology and
single variation method. This system has been applied successfully
in real samples such as industrial water samples and the accuracy
of these methods was also confirmed by some standard materials.

2. Experimental
2.1. Reagents and materials

All reagents were of analytical grade and used as received
standard solution of gold with concentration of 1000 pg mL~'and
HCl and HNO3; were purchased from Merck (Darmstadt, Ger-
many). The working solutions of gold were prepared by diluting
appropriate amounts of the stock solutions with buffer solutions.
A Milli-Q (Millipore, Bedford, MA, USA) purification system was
employed to provide the deionized water needed to prepare all
the required solutions. MCM-48 mesoporous silica was prepared
according to the previously reported procedures [36] and the
mesoporous structure was confirmed by low-angle X-ray diffrac-
tion. For synthesis of N-(3-(triethoxysilyl)propyl)picolonicamide
(TPP), in a 250 mL two-neck round-bottom flask equipped with a
magnetic stir bar and a reflux condenser, 2.0 g (16 mmol) of
4-pyridine carboxylic acid was suspended in 100 mL of dry CH,Cl,
under nitrogen atmosphere. To this solution 5 mL of oxalylchlor-
ide was slowly added from a dropping funnel and the mixture
was stirred for 8 h. Then CH,Cl, was removed under reduced
pressure, and the residue was suspended again in 100 mL of dry
CH,Cl,. After addition of 7 mL triethylamine to reaction mixture,
4.0 g 3-aminopropyltrimethoxysilane was slowly added. The
reaction mixture was stirred at room temperature for further
4 h. The mixture was suspended in water to remove impurities;
then the organic phase separated and the solvent was removed
under reduced pressure to obtain brownish viscose oil [37].

For preparation of pyridine functionalized MCM-48, 1.0g of
MCM-48 was suspended in 50 mL toluene and the mixture was
stirred for 1 h and then 2.0 g of TPP was added and refluxed for 2 h.
The white-brownish solid was removed by filtration and was washed
with toluene and ethanol and then dried at room temperature.

Synthesis of MCM-48 and pyridine-functionalized material was
confirmed by IR spectroscopy, low-angle X-ray diffraction and
elemental analysis. Elemental analysis of 2-Py-MCM-48 sample gave
pyridine concentration of 1.92 mmol g~ !. A schematic diagram of
modified MCM-48 with pyridine is shown in Fig. 1.

2.2. Optimization

In this study, effects of flow rate, type, concentration and
volume of eluent on the recovery of gold desorption from
functionalized MCM-48 silica were investigated. The levels of
four independent variables were selected, based on the previous
data and preliminary works [27]. Totally, 27 experimental points
were defined using central composite design (CCD). This major
class of designs has two parts: a cube and a star. The cube portion
corresponds to a factorial screening design and the star portion of
the design consists of an additional set of points arranged at equal
distances from the center of the cube on radii that pass through
the center point on each face of the cube.

For modeling and prediction of recovery of desorbed gold ions
response surface methodology (RSM) and artificial neural network
(ANN) were used. RSM is a collection of mathematical and
statistical techniques used to define the relationship between
the response and the variables. RSM is mainly used for optimiza-
tion of the effective parameters and scaling up the condition. In
addition, prediction of model equation is one of the steps of RSM
optimization procedure. In order to estimate the response at
different levels of variables, model equation was calculated.
Therefore, the values of variables and the response were used
for prediction of model equations.

Parallel systems of simple processing elements, neurons, are
interconnected to produce artificial neural network. In the pre-
sent study, feed forward, multi-layer perceptions (MLP) type of
ANN was used to predict the optimum conditions. Training of the
ANN was accomplished through the back-propagation algorithm
in MLP, which is the most commonly used in supervised MLP.
Different network architectures were tested and the best predic-
tion was obtained for a network of one hidden layer with 50
neurons. The transfer function was sigmoid function. In the
training procedure, the information is processed in the forward
direction from input layer to hidden and then output layer
obtained as the output of the network.
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Fig. 1. Functionalization of MCM-48 mesoporous silica by TPP.
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The data were processed using Matlab7.80 for artificial neural
network and Stat Graphics Plus package, version 5.1, for experi-
mental design matrix and data analysis.

2.3. Sample preparation

Water samples were obtained from tap water (Tehran, Iran)
and jewelry manufacturing firms (Tehran, Iran). After filtering
water samples through 0.45 um pore size nylon, they were
collected in cleaned polyethylene bottles. Three mine stones from
gold mineral with certified concentrations of gold, which were
reported by Geological Survey of Iran, were obtained. Mineral
samples were digested in an 8 mL mixture of 5% aqua regia with
the assistance of a microwave digestion system. Digestion was
carried out for 2 min at 250 W, 2 min at 0 W, 6 min at 250 W,
5 min at 400 W and 8 min at 550 W, and the mixture was then
vented for 8 min. The residue from this digestion, as well as a
control digestion, was then diluted with deionized water. Finally,
the proposed method was applied to separate and preconcentrate
gold ions in optimum conditions which were obtained by each
optimized method from the aforementioned water samples.

3. Result and discussion

In the present study, artificial neural network and response
surface methodology in combination with experimental design
were applied for determination of gold in industrial waste water
samples. In addition, after optimization of desorption process by
ANN and RSM, two models were compared and the results have
been presented. In this context, gold ions were adsorbed by
functionalized MCM-48 in optimum condition. Similar to the
previous study for gold extraction by MCMs, two effective factors
on adsorption process, pH and sample flow rate were optimized
[27]. According to the previous study adsorption factors were
optimized and at pH=3 and flow rate of 12 mLmin~!, the
adsorption recovery of more than 99.5% was found [27].

The parameters for gold desorption were flow rate, type,
concentration and volume of eluent. Those parameters for deso-
rption of gold ions by functionalized MCM-48 were optimized in
three ways, one factor at a time, CCD-RSM and CCD-ANN. Finally,
three methods were compared with each other.

3.1. Single variable approach

According to the previous studies [27], all parameters such as
type, concentration, volume and flow rate of eluent were
optimized.

3.2. Multivariation approach

According to MVA, all variables should be changed at the same
time. In the present work, central composite design (CCD) was
applied for four parameters to design an experiment. The
obtained data were used for modeling, using response surface
methodology and neural networks.

Previous studies have shown that four parameters for elution
process have to be considered during SPE optimization [27].
Desorption recovery depends on concentration of thiourea (X;),
concentration of HCl (X;), elution flow-rate (X3) and eluent
volume (X,). The domain of variation for each factor was deter-
mined based on knowledge of the system and acquired from
initial experimental trials (Table 1). A total of 27 experiments
were carried out; X;, X5, X3 and X, variables and also their
domains are shown in Table 2.

Table 1
Effective factors and factor levels for desorption of gold ions on functionalized
MCM-48.

Factors Levels
Lowest Low Center High Highest
-162 -1 0 +1  +1.62
(A) Flow rate (mL min 1) 1 2 3 4 5
(B) HCI concentration (mol L~') 0.25 15 275 4 5.25
(C) Thiourea concentration (mol L~') 0 03 0.6 09 1.2
(D) Eluent volume (mL) 1.5 5 8.5 12 15.5
Table 2

Central composite design matrix for the optimization of the desorption of gold on
functionalized MCM-48.

Run Flow rate  HCl Thiourea
(mLmin~') concentration concentration

Eluent Recovery
volume (%)

(mol L) (molL~1) (mL)
1 4 1.5 0.9 12.0 89.4
2 4 4.0 0.9 5.0 50.3
3 4 1.5 0.3 5.0 29.6
4 2 4.0 0.9 12.0 99.2
5 2 1.5 0.9 5.0 57.7
6 4 4.0 0.3 12.0 85.1
7 3 2.75 0.6 8.5 94.5
8 2 15 03 12.0 78.0
9 2 4.0 0.3 5.0 58.6
10 4 1.5 0.3 12.0 48.6
1 4 15 0.9 5.0 46.2
12 2 15 03 5.0 38.1
13 4 4.0 0.3 5.0 43.5
14 2 4.0 0.9 5.0 74.2
15 2 4.0 0.3 12.0 98.9
16 3 2.75 0.6 8.5 94.8
17 4 4.0 0.9 12.0 99.6
18 2 15 0.9 12.0 98.5
19 3 2.75 0.6 1.5 3.2
20 3 5.25 0.6 8.5 99.4
21 3 0.25 0.6 8.5 20.6
22 3 2.75 0.6 15.5 99.8
23 5 2.75 0.6 8.5 82.4
24 3 2.75 0.0 8.5 53.2
25 3 2.75 1.2 8.5 99.7
26 1 2.75 0.6 8.5 99.8
27 3 2.75 0.6 8.5 95.4

3.2.1. CCD-RSM

The extraction condition was optimized by using response
surface methodology. Experiments required for optimizing four
factors in this design are shown in Table 2. The significance of the
variables in the desorption process was evaluated using Pareto’s
chart. As shown in Fig. 2, at the 5% significance level all four
factors are important, volume of elution has the most positive
effect on the desorption recovery and flow rate of elution is the
only negative effect between all main factors. This design includes
the possibility of evaluating cross-effects between variables with-
out the need of performing additional experiments. For gold
desorption yield Y is as follows:

Y = —122.498-15.4739A+5.38083C +48.7062B
+119.492D—1.30833A%—1.59AB—3.16667AC
+0.5AD—5.81333B2-13.5333BC+0.731429BD
~55.2315C2 +3.29762CD—0.914966D> 1)

After identifying the most significant variables, response sur-
face methodology was used to find optimum condition for the
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best recovery. The summary of analysis, which has been shown by
the contour plot and response surface plot, is illustrated in Fig. 3.
For this reason, the R-squared statistic has been adjusted to 98.5%,
which indicates that the model could explain 98.5% of the
variability of the mean recovery of the gold desorption on
functionalized MCM-48. As can be seen in Fig. 3, by increasing
volume and decreasing flow rate, quantitative recovery has been
obtained. Moreover, it seems that optimum condition can be
obtained more precisely by using artificial neural network rather
than response surface methodology.

3.2.2. CCD-ANN

Four factors, flow rate, HCl concentration, thiourea concentra-
tion, and eluent volume, were used as each unit of input layer.
The output layer was composed of the recovery of desorption
process as a response variable. A set of factors such as number of
neurons in hidden layer, irritation, and training algorithm was
optimized to train and feed into the computer.

Back propagation was applied as a suitable network searching
for this work. In order to select the best learning step, seven
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Fig. 2. Pareto chart for desorption process, which shows the significance of
four factors: (A) flow rate, (B) HCI concentration, (C) thiourea concentration, and
(D) volume of elution.
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algorithms were tested in the same condition. For this reason,
output values predicted by ANN were plotted against the corre-
sponding observed values. Linear regression analysis was used to
calculate the gradient (m), intercept (c) and goodness of fit (R?) in
order to investigate the efficiency of each training algorithm for
the experiment. The results for each algorithm are shown in
Table 3. As can be seen, the amount of R? is more than 0.9 for
three algorithms of CGB, BFG and OSS, which shows that the
models will be predictive if those three algorithms apply for
training step. The comparison of the correlation coefficient shows
a clear superiority of CGB, BFG and OSS compared to other
algorithms. Afterward, three algorithms were tested again and
the obtained mean square errors were used to compare three
algorithms together. As can be seen in Table 4, the MSE values are
obtained as 85.31 and 44.21 for OSS and RP, respectively.
The least amount of MSE is obtained by CGB learning algorithm
equal to 21.66, which shows its efficiency for training step.
Therefore, CGB was applied as learning algorithm for further study.

Table 3
Comparison of m, b and R obtained by seven kinds of training algorithms.
CGB*  RP” CGP© CGF¢ Lm® BFG' 0ss®
M" 0.9480 0.9340 0.1450 0.1124 0.3829 0.7446  0.9446
B 24841 3.6111 55.3437 584288 43.9563 12.6367 2.6367
RI 0.9939 0.9932 0.7082 0.7342 0.6335 0.8914 0.9914

Condition of ANN: number of inputs: 4, number of hidden layer: 1, number of
neurons: 10.

¢ Conjugate gradient with Powell/Beale restarts.

b Resilient backpropagation.

¢ Polak-Ribiere conjugate gradient.

4 Fletcher-Powell conjugate gradient.

¢ Levenberg-Marquardt.

T BFGS quasi-Newton.

% One step secant.

" Slope.

! Intercept.

I Regression coefficient.

Volume
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Fig. 3. Response surfaces and contour plot, (a) response surface for the recovery (%) as a function of volume of eluent (mL) and flow rate (mL/min) obtained by
experimental design methodology, (b) contour plot for flow rate (mL/min) as a function of eluent volume (mL) obtained by experimental design methodology, (C) response
surface for the recovery (%) as a function of concentration of eluent (mol/mL) and flow rate (mL/min) obtained by experimental design methodology. ANN condition:
training algorithm: CGB, number of neurons: 50, number of inputs: 4, number of hidden layer, number of irritations: 400.
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Choosing the number of hidden layers is difficult, but typically
one hidden layer is used in a network. In the present work, one
hidden layer is used because a significant improvement in
performance by increasing the number of hidden layers is not
observed. Several iterations were conducted with different num-
bers of epochs and neurons of hidden layer to determine the
optimal ANN structure. The optimum number of neurons or
epochs in the hidden layer was iteratively determined by chan-
ging the number of neurons or epochs. It started with 2 neurons
and 10 epochs and increased later. The learning curve for training
is given in Fig. 4.

As can be found in Fig. 4, mean square error (MSE) decreases
initially and then it becomes almost constant. Therefore, the least

Table 4

Comparison of mean square errors obtained by three kinds of training algorithms.
Training algorithm RP? oss® CGB®
MSE? 44.21 85.31 21.66

Condition of ANN: number of inputs: 4, number of hidden layer: 1, number of
neurons: 10.

2 Resilient backpropagation.

b One step secant.

¢ Polak-Ribiere conjugate gradient.
4 Mean square error.

Best Training Performance is NaN at epoch 386
10 T T T T T T

Mean Squared Error (mse)

1 " L L 1
0 50 100 150 200 250 300 350
387 Epochs

Fig. 4. Learning curves for training set. Condition for ANN: training algorithm:
CGB, number of inputs: 4, number of hidden layer: 1.

Table 5
Effect of the number of neurons on mean square error, mean absolute error and R.

Neurons MSE? MAE® R*

3 183.4702 8.9439 0.8787

5 442.6573 16.7793 0.6736
10 602.92 21.6630 0.8029
20 85.5744 6.6093 0.9458
30 0.1628 0.2550 0.9999
40 0.0306 0.0860 1.0000
50 0.0156 0.0386 1.0000
60 0.0255 0.0725 1.0000
70 0.0156 0.0385 1.0000

Condition of ANN: number of inputs: 4, number of hidden layer: 1, training
algorithm: CGB.

2 Mean square error.

> Mean absolute error.

¢ Regression coefficient.

Qutputs vs. Targets, R=0.99998
100 T T T T

< Data Points
Best Linear Fit 1

90+

Outputs Y, Linear Fit: Y=(1)T+(0.0023)

0 L 1 L L

0 20 40 60 80 100
Targets T

Fig. 5. Experimental and ANN predicted recovery for gold desorption for the
training set. Condition for ANN: training algorithm: CGB, number of neurons: 50,
number of inputs: 4, number of hidden layer: 1, number of irritations: 400.

Table 6
Optimized conditions obtained by three different optimization methods.

Optimization Flow rate HCl Thiourea Eluent
method (mLmin~") concentration concentration volume
(mol L~ 1) (mol L™ 1) (mL)
SVA 2.0 3.0 1.0 10.0
CCD-RSM 1.5 33 0.8 10.5
CCD-ANN 1.9 3.0 0.9 8.1

Condition of ANN: training algorithm: CGB, number of neurons: 50, number of
inputs: 4, number of hidden layer: 1, number of irritations: 400.

Table 7
Measured and estimated responses by RSM and ANN for ten random experiments

Run Flow HCl Thiourea Volume RSM ANN Experiment
rate
1 3 25 05 4 46.81388 38.551 403
2 2 1.5 0.2 6 31.04676 32.6366 32.5
3 2 3.0 1.0 6 83.4723 90.0921 91.2
4 1 25 09 7 93.09602 102.3034 99.4
5 1 3.5 0.7 13 112.7954 99.7627 99.7
6 2 1.5 0.1 10 34.48466 55.4565 51.9
7 3 15 0.5 8 64.93298 59.6421 60.6
8 2 20 03 8 64.53673 55.9536 57.1
9 3 40 04 5 6132669 48.762 52.1
10 2 3.0 038 11 113.646 99.6997 99.8

Condition of ANN: training algorithm: CGB, number of neurons: 50, number of
inputs: 4, number of hidden layer: 1, number of irritations: 400.

Table 8
Comparison of mean absolute and square errors
obtained of two optimized methods.

Error ANN RSM
MAE? 0.17 -2.55
MSE" 3.87 96.97

Condition of ANN: training algorithm: CGB, number of
neurons: 50, number of inputs: 4, number of hidden
layer, number of irritations: 400.

¢ Mean absolute error.

> Mean square error.
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MSE value was obtained with 50 neurons and 400 epochs in the
hidden layer. The results are shown in Table 5 and Fig. 4. There-
fore, the optimal structure of the network with 50 neurons in the
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Fig. 6. Experimental and (a) RSM, (b) ANN predicted recovery for the testing set.
Condition for ANN: training algorithm: CGB, number of neurons: 50, number of
inputs: 4, number of hidden layer: 1, number of irritations: 400.

Table 9

hidden layer and 400 epochs was applied for further prediction
(4:50:1), which 4 shows the number of factors, 50 is related to the
number of neurons in hidden layer and 1 is the number of yield.
The sigmoid and linear functions were used as the transfer
functions for the hidden and output layer nodes, respectively.
During the training process, the values of weights between
individual neurons were assigned. To determine how a neural
network is performing during iterative training, the value of
errors was calculated.

The trained network was used to estimate the response of 27
experimental points. R> between actual and estimated responses
was determined as 0.999 (Fig. 5). The optimum condition is
obtained by artificial neural network as optimized method is
shown in Table 6. As can be seen, there are more than one point
with quantitative recovery ( > 99). However, the optimum con-
dition with the lowest amount of eluent volume is selected to
obtain the higher concentration factor. The summary of the
optimum conditions which is obtained by three different optimi-
zation methods is listed in Table 6.

3.3. Comparative study of the ANN and RSM modeling

After modeling, ten experiments were designed randomly with
Matlab programming, and the predicted recoveries obtained by
ANN and RSM were compared with SVA results (Table 7). Mean
absolute and square error data is shown in Table 8. As can be
seen, the values of MAE and MSE are obtained as 96.97 and —2.55
for RSM, which are too large than those of ANN. Therefore,
calculated data by ANN model prediction are more similar to
the experiments results those of RSM predicted results. In addi-
tion, the predicted and experimental recoveries for desorption of
gold ions on functionalized MCM-48 by ANN and RSM are shown
in Fig. 6. There was a good agreement between the ANN predic-
tions and experimental data with a correlation coefficient of
0.9945, whereas this amount decreases to 0.8857 for RSM
methodology. Therefore, artificial neural network can be accepted

Data of univariate calibration for gold desorption on MCM-48 optimized by different methods.

Optimized Number of r? Limit of Concentration Recovery RSD?

method experiments detection factor (%) (%)
(ngmL~1)

SVA 10 0.997 0.076 857 99.4 0.9

CCD-RSM 10 0.999 0.084 830 99.6 0.9

CCD-ANN 10 0.998 0.060 1050 99.3 14

Condition: SVA: flow rate: 2.0 mL min !, HCI concentration: 3.0 mol L™ !, thiourea concentration: 1.0 mol L~ !, volume: 10.0 mL; CCD-RSM: flow rate: 1.5 mL min~', HCI

concentration: 3.3 mol L~!, thiourea concentration: 0.8 mol L™,
concentration: 0.9 mol L™, volume: 8.1 mL.

3 Relative standard deviation for 50 ng mL~ 1.

Table 10

volume: 10.5 mL; CCD-ANN: flow rate: 1.9 mLmin~!, HCl concentration: 3.0 mol L™, thiourea

Determinationof gold in mine stones, for accuracy test of the optimized methods (N=4).

Samples Certified Found value (ugg™") Recovery (%) Standard deviation Zero hypothesis T-test (p=0.05)
value (ugg™")
SVA RSM ANN SVA RSM ANN SVA RSM ANN SVA RSM ANN
Mine stone 1 1.100 1.018 1.119 1.040 92,5 101.7 94.5 13 0.9 0.9 Y Y Y
Mine stone 2 0.600 0.607 0.641 0.611 101.2 106.8 101.8 0.8 2.1 1.1 Y Y Y
Mine stone 3  6.400 6.290 6.410 6.327 98.3 100.1 98.8 1.9 1.6 1.1 Y Y Y

Condition: SVA: flow rate: 2.0 mL min~!, HCl concentration: 3.0 mol L=, thiourea concentration: 1.0 mol L=, volume: 10.0 mL; CCD-RSM: flow rate: 1.5 mL min!, HCI

concentration: 3.3 mol L™, thiourea concentration: 0.8 molL~', volume: 10.5 mL; CCD-ANN: flow rate: 1.9 mLmin™!, HCl concentration: 3.0 molL"’,

concentration: 0.9 mol L™, volume: 8.1 mL.

thiourea
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Table 11
Recovery and precision of the determination of gold in various samples.

Samples Real sample (ng mL~ 1) Added (ng mL~1) Found (ng mL™ 1) Recovery (%) + standard deviation

SVA RSM ANN SVA RSM ANN SVA RSM ANN
Distilled water ND ND ND 2.000 1.986 1.988 1.988 99.34+0.9 99.4 +0.9 994+ 14
Tap water ND ND ND 2.000 1.960 1.984 1.984 98.0+1.2 975+1.1 99.2+1.3
Waste water 49.7 51.1 49.9 50.00 96.50 99.78 98.00 96.8+1.8 98.7+23 98.1+2.0

Condition: SVA: flow rate: 2.0 mL min~', HCl concentration: 3.0 mol L', thiourea concentration: 1.0 mol L=, volume: 10.0 mL; CCD-RSM: flow rate: 1.5 mL min~—', HCI
concentration: 3.3 mol L~!, thiourea concentration: 0.8 mol L~!, volume: 10.5 mL; CCD-ANN: flow rate: 1.9 mLmin~!, HCl concentration: 3.0 molL~', thiourea

concentration: 0.9 mol L™, volume: 8.1 mL.

as a more precise method than response surface methodology for
modeling of desorption of gold ions on MCM-48.

3.4. Applications of the optimized conditions

SPE is an efficient preconcentration method in analysis extraction
of heavy metals. The optimal conditions of SPE found by SVA and
MVA (CCD-RSM and CCD-ANN) were applied and LOD of gold
extraction were obtained as 0.076, 0.084 and 0.060 for SVA, CCD-
RSM and CCD-ANN, respectively (Table 9). For this reason, calibration
curves were achieved and LOD values were calculated according to
the calibration curve from G op= kSp/m, where the numerical factor,
k, equals 3.

Three certified reference materials were used for validation of
the proposed method. As can be found in Table 10, a good
correlation was obtained between the estimated content and the
one found by the present method (with all obtained conditions by
SVA and MVA). Therefore, the optimized method by ANN or RSM
can be used as a confident method for extraction and determination
of gold by functionalized MCM-48 in different kinds of samples.

3.5. Determination of gold in real industry sample

In the present method, functionalized MCM-48 was used as a
selective sorbent for gold extraction at pH of 3 and was applied as
solid phase to reduce the undesirable effect of complex matrices of
real samples. Table 11 shows the gold recovery in industrial samples.

4. Conclusions

The advantages of artificial neural network in comparison with
single variation analysis and response surface methodology were
shown. By using central composite design the number of required
experiments was obtained to be more than two times lower than
that of single variation approach. Applying CCD decreases the
time of analysis and experiment expense without any obvious
reduction in efficiency. Moreover, it was shown that optimization
using ANN’s is more accurate in comparison with RSM met.
Although by applying AAN and RSM no obvious improvement in
selectivity has been obtained, but saving in time, cost and
solution consumption are three important factors, which improve
in this way. Moreover, limit of detection improves by using ANN,
which can be informed by reported LOD values [27].
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